Home Nature preserves A method for optimizing performance and resource utilization in quantum machine learning circuits

A method for optimizing performance and resource utilization in quantum machine learning circuits

0
  • Humble, TS, Thapliyal, H., Munoz-Coreas, E., Mohiyaddin, FA & Bennink, RS Quantum computing circuits and devices. IEEE Des. Test. 36(3), 69–94 (2019).

    Article

    Google Scholar

  • Benenti, G., Casati, G., and Strini, G. Principles of Quantum Computation and Information – Volume II: Basic Tools and Special Topics. World Scientific Publishing Society (2007).

  • Schuld, M. & Petruccione, F. Supervised learning with quantum computers (Springer, Berlin, 2018).

    Book

    Google Scholar

  • Grover, LK A fast quantum mechanical algorithm for database searching. In Proceedings of the ACM’s Twenty-Eighth Annual Symposium on Theory of Computing pp. 212–219 (1996)

  • Humble, TS, Thapliyal, H., Munoz-Coreas, E., Mohiyaddin, FA & Bennink, RS Quantum computing circuits and devices. IEEE Des. Test. 36(3), 69–94 (2019).

    Article

    Google Scholar

  • Gyongyosi, L. & Imre, S. A Survey of Quantum Computing Technology. Calculation. Sci. Round. 1(31), 51–71 (2019).

    MathSciNet
    Article

    Google Scholar

  • Dang, Y., Jiang, N., Hu, H., Ji, Z. & Zhang, W. Image classification based on the quantum K-Nearest-Neighbor algorithm. Inf. Quantum Treat. 17(9), 1–8 (2018).

    Article

    Google Scholar

  • Beheshti Roui, M., Zomorodi, M., Sarvelayati, M., Abdar, M., Noori, H., Pławiak, P., Tadeusiewicz, R., Zhou, X., Khosravi, A., Nahavandi, S. & Acharya, UR A novel genetic algorithm-based approach to accelerate classification rule discovery on GPUs. Knowledge based system 231107419 https://doi.org/10.1016/j.knosys.2021.107419 (2021).

    Article

    Google Scholar

  • Ruan, Y., Xue, X., Liu, H., Tan, J. & Li, X. Quantum algorithm for k-nearest neighbor classification based on Hamming distance metric. Int. J. Theor. Phys. 56(11), 3496–507 (2017).

    MathSciNet
    Article

    Google Scholar

  • Savchuk, MM & Fesenko, AV Quantum Computation: Survey and Analysis. Cybern. System Anal. 55(1), 10–21 (2019).

    MathSciNet
    Article

    Google Scholar

  • Ghodsollahee, I., Davarzani, Z., Zomorodi, M., Pławiak, P., Houshmand, M. & Houshmand, M. Matrix model of quantum circuit connectivity and its application to the optimization of distributed quantum circuits. Inf. Quantum Treat. 20(7), 235https://doi.org/10.1007/s11128-021-03170-5(2021).

    ADS
    MathSciNet
    Article

    Google Scholar

  • Gilyén, A., Arunachalam, S., and Wiebe, N. Optimizing quantum optimization algorithms via faster quantum gradient computation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms 2019 (pp. 1425–1444). Society of Industrial and Applied Mathematics.

  • Daei, O., Navi, K. & Zomorodi-Moghadam, M. Optimized partitioning of quantum circuits.Int. J. Theor. Phys. 59(12), 3804-3820 https://doi.org/10.1007/s10773-020-04633-8 (2020).

    Article
    MATH

    Google Scholar

  • Thapliyal, H. & Ranganathan, N. Reversible Sequential Circuit Design Optimizing Quantum Cost, Delay, and Waste Outputs. ACM J. Emerg. Technology. Calculation. System (JETC). 6(4), 1–31 (2010).

    Article

    Google Scholar

  • Häner, T., Hoefler, T., and Troyer, M. Using Hoare’s logic for the optimization of quantum circuits. ArXiv electronic prints. (2018).

  • Nam, Y., Ross, NJ, Su, Y., Childs, AM, and Maslov, D. Automated optimization of large quantum circuits with continuous parameters. NPJ Quant. Inf. 4(1), 1–2 (2018).

  • Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–85 (2015).

    ADS
    Article

    Google Scholar

  • Hagouel, PI, & Karafyllidis, IG Quantum computers: registers, gates and algorithms. In 2012 Proceedings of the 28th International Conference on Microelectronics p. 15-21. IEEE (2012).

  • Soklakov, AN & Schack, R. Efficient state preparation for a quantum bit register. Phys. Rev. HAS 73(1), 012307 (2006).

    ADS
    Article

    Google Scholar

  • Giovannetti, V., Lloyd, S. & Maccone, L. Quantum RAM. Phys. Rev. Lett. 100(16), 160501 (2008).

    ADS
    MathSciNet
    Article

    Google Scholar

  • Lloyd, S., Garnerone, S. & Zanardi, P. Quantum Algorithms for Topological and Geometric Data Analysis. Nat. Common. seven(1), 1–7 (2016).

    Article

    Google Scholar

  • Wiebe, N., Granade, C., Ferrie, C. & Cory, D. Quantum Hamiltonian learning using imperfect quantum resources. Phys. Rev. HAS 89(4), 042314 (2014).

    ADS
    Article

    Google Scholar

  • Grover, LK A fast quantum mechanical algorithm for database searching. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing pp. 212-219 (1996).

  • Buhrman, H., Cleve, R., Watrous, J. & De Wolf, R. Quantum Fingerprints. Phys. Rev. Lett. 87(16), 167902 (2001).

    ADS
    Article

    Google Scholar

  • Kaye, P. Reversible addition circuit using an auxiliary bit with application to quantum computing. arXiv preprint. arXiv:quant-ph/0408173 (2004).

  • Saeedi, S., & Arodz, T. Quantum Sparse Support Vector Machines. arXiv preprint arXiv:1902.01879 (2019).

  • Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum Support Vector Machine for Big Data Classification. Phys. Rev. Lett. 113(13), 130503 (2014).

    ADS
    Article

    Google Scholar

  • Acar, E. & Yilmaz, I. COVID-19 detection on IBM quantum computer with classical quantum transfer learning. Turkish. J. Electr. Eng. Calculation. Sci. 29(1), 46–61 (2021).

    Article

    Google Scholar

  • Zen, R. et al. Transfer learning for the scalability of quantum states of neural networks. Phys. Rev. E 101(5), 053301 (2020).

    ADS
    Article

    Google Scholar

  • Mishra, N., Bisarya, A., Kumar, S., Behera, BK, Mukhopadhyay, S. and Panigrahi PK. Cancer detection using quantum neural networks: a demonstration on a quantum computer. arXiv preprint arXiv:1911.00504 (2019).

  • Bae, JH, Alsing, PM, Ahn, D. & Miller, WA Quantum circuit optimization using the Karnaugh quantum map. Sci. representing ten(1), 1–8 (2020).

    Article

    Google Scholar

  • Basak, A., Sadhu, A., Das, K. & Sharma, KK Cost optimization technique for quantum circuits. Int. J. Theor. Phys. 58(9), 3158–79 (2019).

    MathSciNet
    Article

    Google Scholar

  • Li, L., Fan, M., Coram, M., Riley, P. & Leichenauer, S. Quantum optimization with a new Gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2(2), 023074 (2020).

    Article

    Google Scholar

  • Alam, M., Ash-Saki, A., and Ghosh, S. Accelerating Quantum Approximate Optimization Algorithm Using Machine Learning. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 686–689, 2020). IEEE.

  • Hoare, CA An axiomatic basis for computer programming. Common. MCA 12(10), 576–80 (1969).

    Article

    Google Scholar

  • Abdessaied, N., Soeken, M., and Drechsler, R. Quantum circuit optimization by Hadamard gate reduction. In International conference on reversible calculus p. 149–162. Springer, Cham (2014).

  • Zomorodi-Moghadam, M. & Navi, K. Spin-based design and synthesis of quantum circuits. J.Circ. System Calculation. 25(12), 1650152 (2016).

    Article

    Google Scholar

  • Itoko, T., Raymond, R., Imamichi, T. & Matsuo, A. Optimizing quantum circuit mapping using transformation and gate switching. The integration. 1(70), 43-50 (2020).

    Article

    Google Scholar

  • Curry, M. Symbolic Quantum Circuit Simplification in SymPy.

  • Variational quantum classifier – Syed Farhan (born-2learn.github.io)

  • Mandviwalla, A., Ohshiro, K., & Ji, B. Implementation of Grover’s Algorithm on IBM Quantum Computers. In2018 IEEE International Conference on Big Data (Big Data) (pp 2531–2537, 2018). IEEE.

  • Karalekas, PJ et al. A quantum classical cloud platform optimized for variational hybrid algorithms. As to. Sci. Technology. 5(2), 024003 (2020).

    ADS
    Article

    Google Scholar

  • Larose, R. Overview and comparison of gate-level quantum software platforms. Quantum 25(3), 130 (2019).

    Article

    Google Scholar

  • https://cds.cern.ch/record/2716204/plots.

  • LaBorde, ML, Rogers, AC & Dowling, JP Finding Broken Gates in Quantum Circuits: Harnessing Hybrid Machine Learning. As to. Inf. Treat. 19(8), 1–8 (2020).

    MathSciNet
    Article

    Google Scholar

  • McKay, DC, et al. Qiskit backend specifications for openqasm and openpulse experiments. arXiv preprint arXiv:1809.03452 (2018).

  • Abbaszade, M., Salari, V., Mousavi, SS, Zomorodi, M. & Zhou, X. Application of quantum natural language processing for language translation. IEEE access. 30(9), 130434–48 (2021).

    Article

    Google Scholar

  • Salari, V., et. al. Quantum facial recognition protocol with phantom imaging. preprint: arXiv:2110.10088. [quant-ph]

  • Coecke, B. & Duncan, R. Interacting Quantum Observables: Categorical Algebra and Diagrams. New J. Phys. 13(4), 043016 (2011).

    ADS
    MathSciNet
    Article

    Google Scholar

  • Duncan, R., Kissinger, A., Perdrix, S. & Van De Wetering, J. Simplifying Graph Theory of Quantum Circuits with ZX Computation. Quantum 4(4), 279 (2020).

    Article

    Google Scholar

  • Jang, W., Terashi, K., Saito, M., Bauer, CW, Nachman, B., Iiyama, Y., Kishimoto, T., Okubo, R., Sawada, R. and Tanaka, J. Quantum recognition grid shapes and circuit optimization for scientific applications. In EPJ Web of Conferences 2021 (vol. 251, p. 03023). Computer Sciences.

  • Sivarajah, S. et al. t| ket: A retargetable compiler for NISQ devices. As to. Sci. Technology. 6(1), 014003 (2020).

    ADS
    Article

    Google Scholar

  • Smith, RS, Peterson, EC, Skilbeck, MG & Davis, EJ An industrial-grade open-source optimization compiler for quantum programs. As to. Sci. Technology. 5(4), 044001 (2020).

    ADS
    Article

    Google Scholar